

				Basic Pa	art Data			
Language: Pref	erred language	to fill in the DFM Rep	oort is English.	. Usage of ot	ther language is a	applicable if upfro	ont agreed with BSH	EN
End Custome	r	BSH				Mould BSH Se	rial No	4059953
Project Name		TE300				Planned Machi	ne (T)	500
Part Name		L-Housing 30				Cavities		2
Part material		PA Durethan BKV	30F 000000			Part CQP Clasi	fication [A, B, C]	В
CAD No. / Rev	Status	6010000004224		B1-T		Submission Da	ate	27.03.2016
	Part	Novak	Janez Nova	k, janez.nov	vak@bshg.com	, +386 (3) 8311- ⁻	111	
Contact (s)	Tool	Zorec	Ivan Zorec, ivan.zorec@bshg.com, +386 (3) 8322-222					
	Project	Name3	Name, Mail, Telephone					
				Mould Ma	aker Data			
Customer (if n	ot BSH)	Eurel		des	Basic Tool Din	nensions (BHT)	296x346x343	
Mould Maker		Shanghai Weihong	in in	0.0	Injection system Cold runner system		m	
Mould Designer (contact1)		John Doe, Mail, Telephone	e data and the information of elem			Moulding Machine Force [kN]	5000kN	
Other Contact (s)		Name1, Mail1, Telephone1 Name2, Mail2, Telephone2			Shot volume with sprue [cm ³] (Foreseen value)		56,5ccm	
DFM Report Responsible (contact2)		John Doe, Mail, Telephone			Submission Date		28.04.2016	

1.2 Table of contents

			Req	uested	Do	ne and Confirmed
	Chapter	Торіс	For	After	Supplier	Datum
			Quotation	Tool Order	Finished ^B	OK Customer Confirmed ^A
1. Project	1.1	Project & DFM Information	✓	✓	Yes	Novak, 2016-04-25
1. Project	1.2	Table of contents	√	✓	Yes	Novak, 2016-04-25
2. Product	2.1	Part and tool basic data	1	✓	Yes	Novak, 2016-04-25
Info	2.2	Mould cavity Layout	Ý	✓	Yes	Novak, 2016-04-25
into	2.3	Gate Location and Type PROPOSAL	1	~	Yes	Novak, 2016-04-25
	3.1	Cavity & Core main parting lines definition	1	17	Yes	Novak, 2016-04-25
3. Parting	3.2	Slider & Lifter core Location and parting line definition	1	<i>V</i> ,,,	Yes	Novak, 2016-04-25
Lines	3.3	Ejector pin Location Proposal	1	\sim	Yes	Novak, 2016-04-25
	3.4	Venting of critical areas	 ✓)` √	Yes	Novak, 2016-04-25
4. Draft	4.1	Draft Analysis	Xa	✓	Yes	Novak, 2016-04-25
5. Drawing Analysis (2D)	5.1	Analysis of Control Dimension, Tolerances, Surface finish,	Orly	✓	Yes	Novak, 2016-04-25
6. Cooling	6.1	Cooling Channel Proposal & cooling of cavity inserts and critical areas		✓	Yes	Zorec, 2016-04-28
7. Improvement proposals	7.1	Product / Mould Improvement Proposals	For Quotation	✓	Yes	Novak, 2016-04-25
	8.1	Cavity No. typ, size and Location	not	√	Yes	Novak, 2016-04-25
8. Product Engrave	8.2		Requested	✓	Yes	Novak, 2016-04-25
	8.3	Adjustable model version sign typ, size and Location	1	✓	Yes	Novak, 2016-04-25
9. Mold flow analysis		Adjustuale model version sign syp, size and tocation the			Yes	Zorec, 2016-04-28
10. Remarks	10	Other remarks		✓	No	/

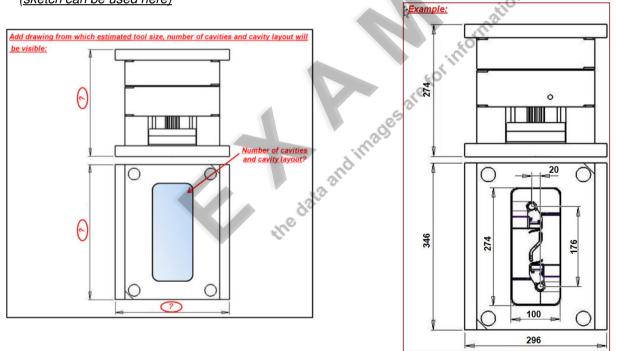
*CRITERIA: (CQP Classification A,B,C - see BSH data on pg.1)

 1.
 For A parts:
 → Necessary

2. For B and C parts: \rightarrow I

→ If without cooling process part warps more than are allowable tolerances on drawing then COOL-analysis HAS TO BE PERFORMED

A ... filled in by BSH


B ... filled in by supplier

2.1 Part and Tool basic data

Short description	n of Mold.	Hot-runner mould			
Confirmation:	Tool can be us moulding mac	sed on 1st page planned hine	DEMAG 500t	Cavity Steel	1.2343 HRC52-54
Type of Gate			Tunnel gate	Core Steel	1.2343 HRC52-54
No. of Cavity			1*1	Slider Steel	1.2343 HRC52-54
No. of Injection F	Points		1*1	Lifter Steel	1.2343 HRC52-54
Estimate Part We	eight (g)		520g	Coating of cores and cavities	none
Mold Shrinkage			1.0052	Resin (Color Additiv)	ABS+MB
				Estimated Runner Weight (g)	
	D CAVIT	Y LAYOUT		anal	QUI

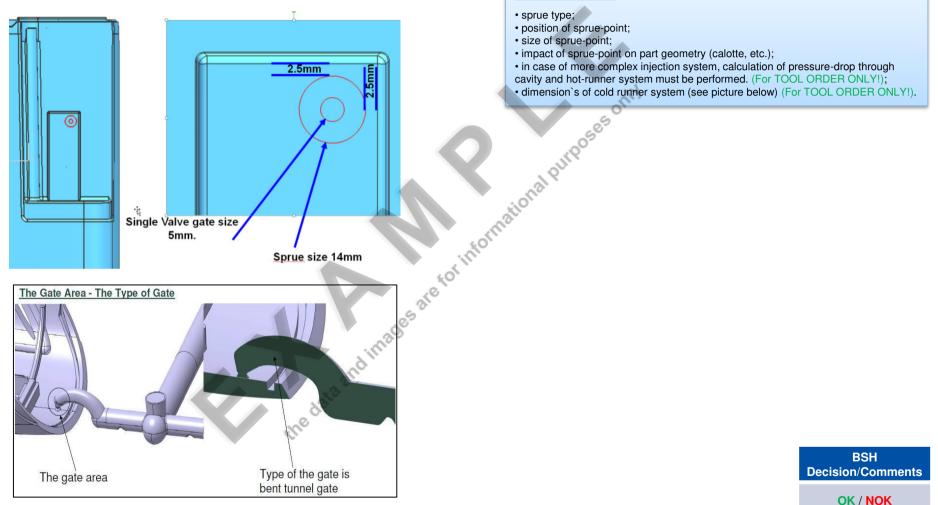
2.2 MOULD CAVITY LAYOUT

(sketch can be used here)

On injection moulding tool concept show:

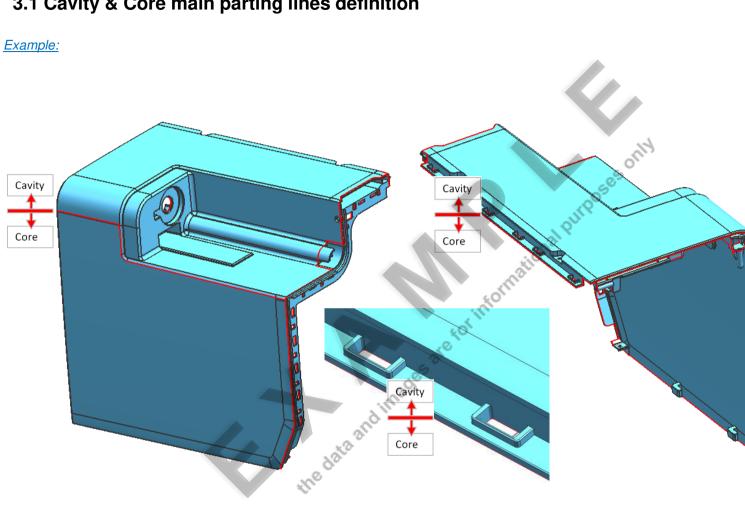
B/S/H/

- number of cavities;
- · layout of cavity inserts;
- tool orientation on the moulding machine. Mark upper (Top) side of tool.


BSH Decision/Comments

> **OK / NOK** Name, dd.mm.yy

2.3 Gate location and Type Proposal


Example:

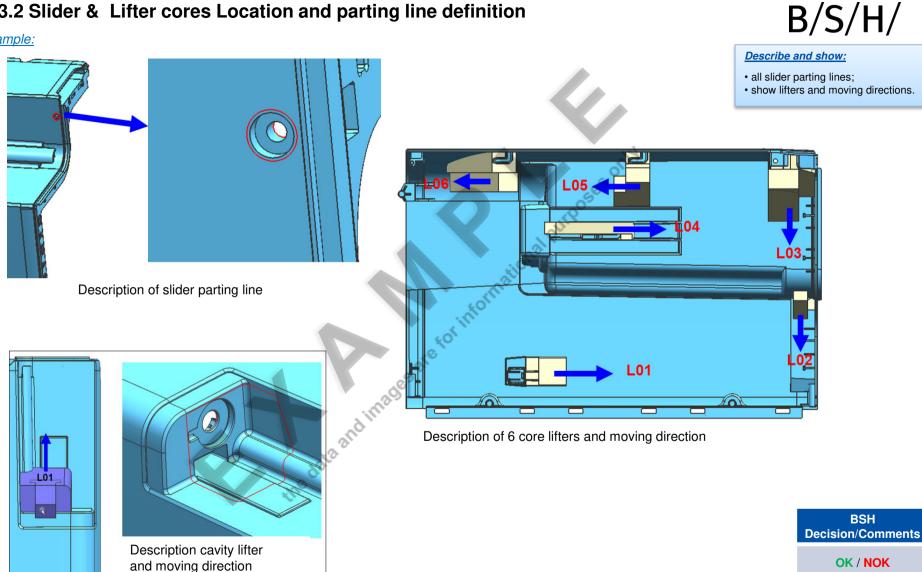
B/S/H/

Name, dd.mm.yy

3.1 Cavity & Core main parting lines definition

B/S/H/

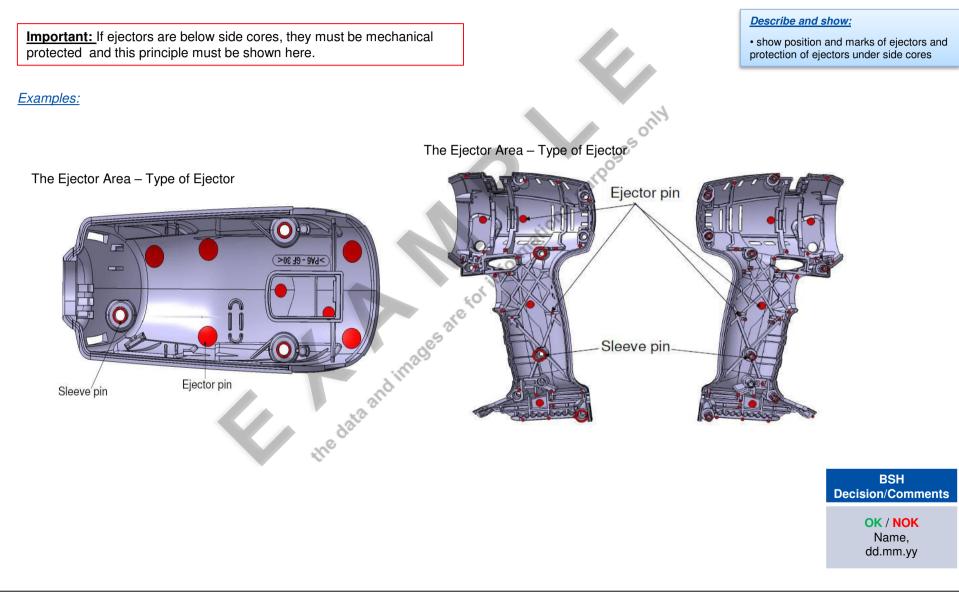
Describe and show: • main parting lines


BSH **Decision/Comments**

> OK / NOK Name, dd.mm.yy

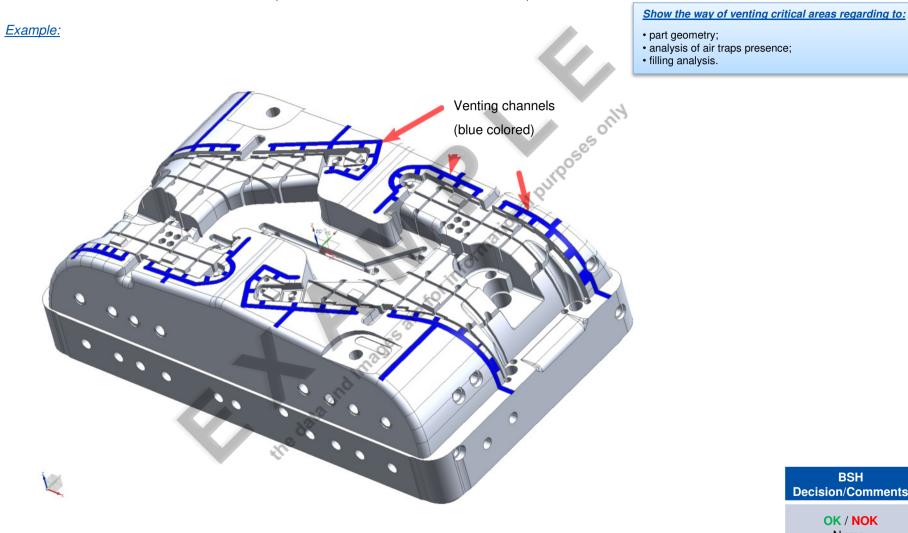
BSH HOME APPLIANCES GROUP

3.2 Slider & Lifter cores Location and parting line definition


Example:

Name, dd.mm.yy

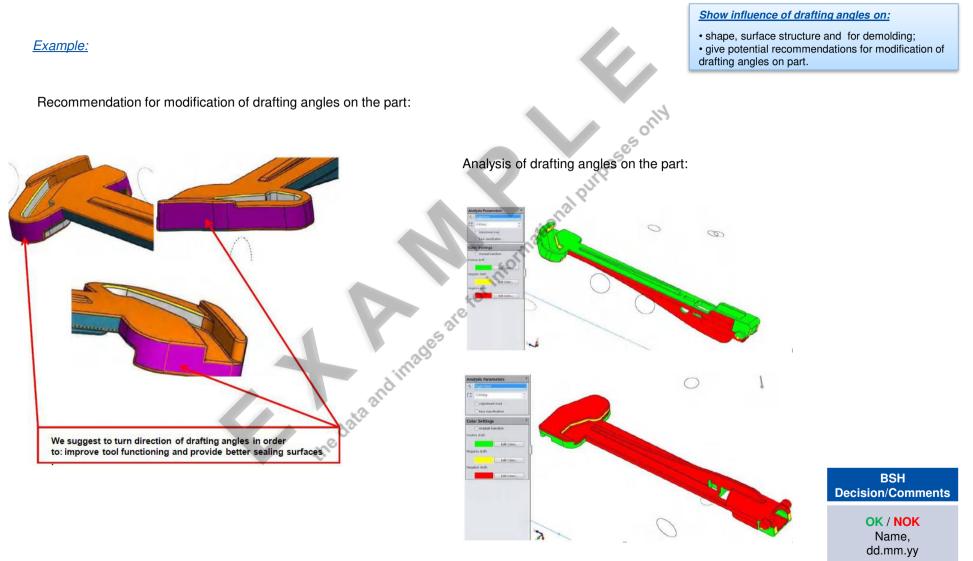
3.3 Ejector pin Location Proposal


B/S/H/

3.4 Venting of critical areas:

(for Quotation sketch can be used here)

B/S/H/


BSH Decision/Comments

> OK / NOK Name,

dd.mm.yy

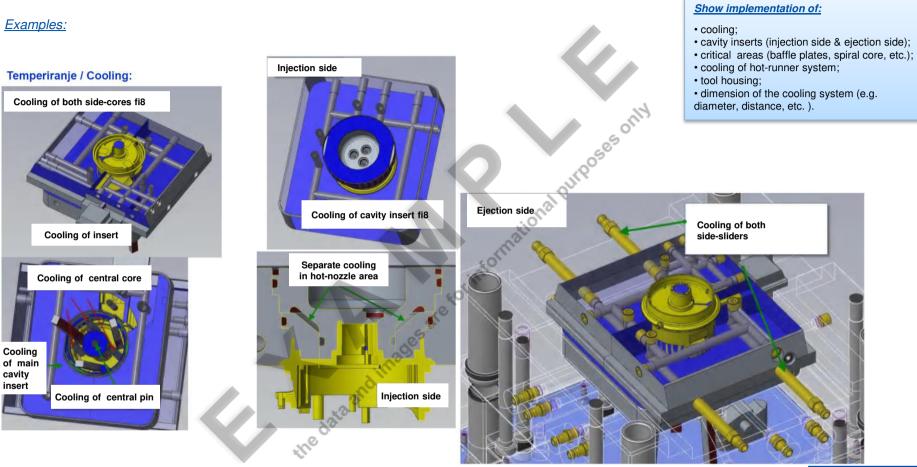
4.1 Draft analysis

B/S/H/

5.1 Analysis of Control Dimension, Tolerances, Surface finish,...

If proposal for drawing change exist it must be clarified and confirmed here.

Check 2D drawing characteristics and specially:


- control dimension analysis;
- tolerance analysis;
- how to reach the requirements?
- changeable inserts / separate inserts?!?
- the data and images are for informational purposes only • surface finish analysis.

BSH Decision/Comments

> OK / NOK Name, dd.mm.yy

6.1 Cooling Channel Proposal & cooling of cavity inserts and critical areas

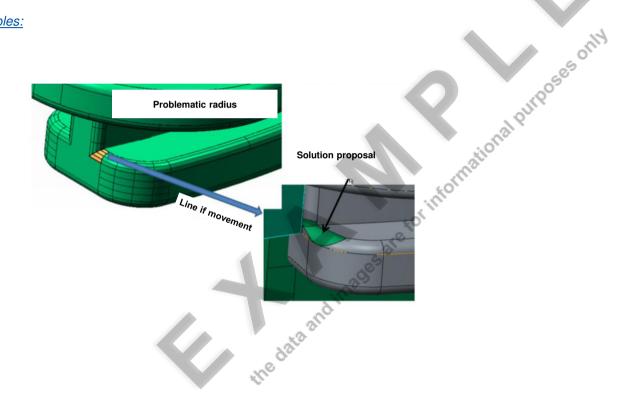
B/S/H/

BSH Decision/Comments

> OK / NOK Name,

dd.mm.yy

7.1 Improvement Proposals


Undercut Improvement Proposal 1

Examples:

Describe and show proposals e.g.:

- undercut Improvement Proposal;
- mould Improvement Proposal;
- cavity & Core Draft Angle Improvement Proposal;
- slider & Lifter Draft Angle Improvement Proposal.

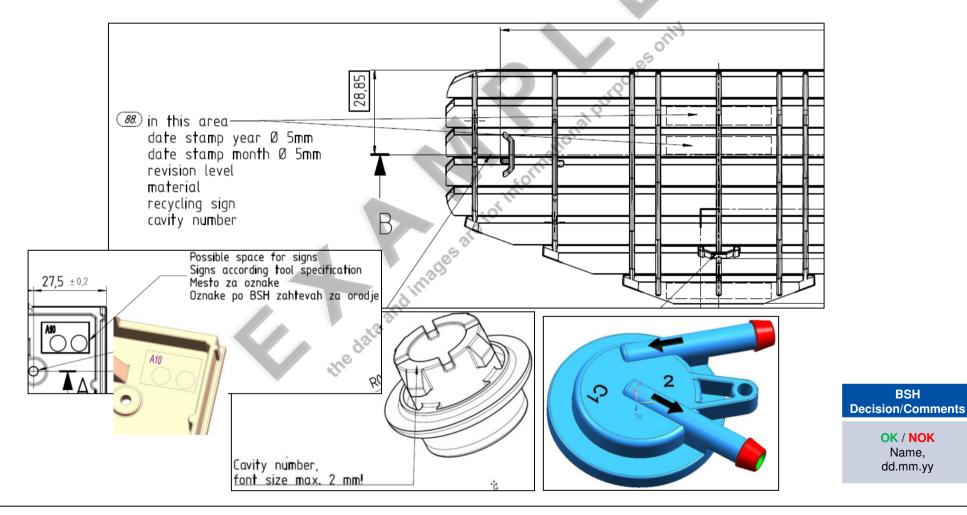
BSH Decision/Comments

> OK / NOK Name,

dd.mm.yy

8 Product Engrave, Sign type size and location

Confirmation whether proposed place for signs is suitable regarding injection moulding-tool concept. If not, here show proposal for other location.


Examples:

B/S/H/

Check 2D drawing demands:

8.1 cavity no. type, size and location

- 8.2 adjustable date sign type, size and location
- 8.3 adjustable model version sign type, size and location

9 Mold flow analysis

Mold Flow Analysis Report should be a separate report, prepared in detailed and professional manner. See points 9.1÷ 9.8

This file or files must be attached to this DFM Report.

Restriction:

A mesh match percentage of **85%** or higher is acceptable for a Dual Domain Fill+Pack analysis. A percentage of 50% or lower will cause the Fill+Pack analysis to abort. For a Dual Domain Warp analysis, the mesh match percentage should exceed **85%**.

	File name	Sent: Datum
DFM Report Attachment 1	DFM_MF_4059953_001. pdf	2017-04-26
DFM Report Attachment 2	rete	
DFM Report Attachment 3	.85.0	
DFM Report Attachment 4	· · · · · · · · · · · · · · · · · · ·	
	the data and t	

9 Mold flow analysis:

sesoni

9.1 Input data
9.1.1 mesh (parameter)
9.1.2 material, process parameter (mold, barrel, hot runner temperature, e.g.)
9.2 fill time
9.3 pressure drop
9.4 weld lines
9.5 air traps
9.6 sink marks
9.7 warping
9.8 cool FEM analysis

BSH Decision/Comments

> OK / NOK Name,

dd.mm.yy

10 OTHER REMARKS ^B

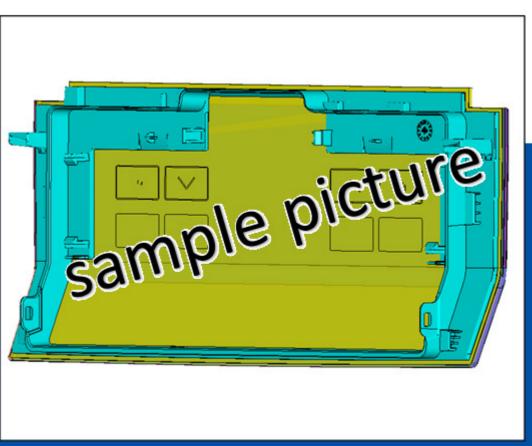
B/S/H/

Fill in other remarks or proposals that are important for achieving manufacturing process as foreseen with the requirements.

BSH Decision/Comments

> OK / NOK Name, dd.mm.yy

IMPORTANT NOTE: If there are no remarks to the technical requirements or other related documentation submitted by BSH, it is assumed, that supplier confirms to achieve required product, tool and process specifications.


the date and images are for informational purposes only

C1 / 20.04.2021

Moldflow Report

Sample component

In this sample document, sample examples are provided for clarification. This sample document is not filled in for an real component, but rather images of different components and fillings of each field that are independent of each other.

BSH Hausgeräte GmbH / Product Division Consumer Products

MF Report (Version 08/2021) I Page: 1

Document History

Step A - BSH internal during development, only on the component (optional)

Step B - requested suppliers, on the component with simplified cooling and simplified gate

Step C - selected supplier together with DFM document before start of tool making, component with sprue and tool with concrete CAD tool design (Step C may have to be repeated for larger tool changes)

Letter of step is the letter of the revision, number of the revision is consecutive and starts at 1 per step/ revision

Revision	Date	Created by	Modification Text		
A1	15.02.2019	Mustername	heck of first concept / only at CAD model of part		
A2	18.08.2020	Mustername	Check of Status "Quotation" revision of part A4 / injection system is simplified		
B1	10.11.2020	Beispilename	Mold Flow with offer / simplified injection- and cooling system		
B2	05.01.2021	Beispilename	Update after confirmed adjustments / tool data are simplified		
C1	20.04.2021	Beispilename	Mold Flow after Tool Order and before starting tool making / digital tool data are used for Simulation		

General Rules

- Feasibility Commitment stay valid! also if results of Moldflow are out of tolerance → real part must arrive tolerances
- Language of document is English
- Naming of document is MF SAP Nr. Revision Part Name (*example: MF 8001001515 A1 Sample Name*)
- Results have to be in SI-Units or typical units, different units after conforming by BSH possible
- Instead of unit "bar" it is possible use unit "MPa" (change must be marked!)
- Deformation and deviations have to be cleaned up of shrinkage/ excluded of shrinkage
- Result pictures must have a readable scale with units
- Variation of simulation must be clearly marked as variation
- Input data stay the same for all results
- If there is not enough space at one page, it is possible to copy template foil of this topic
- STL-file of deformed part after total cooling (to 23 °C) is desirable
- Animation (for example of part filling) can be separate video data otherwise they have to be implemented in Document as video
- Pages which are marked as optional are not necessary, all other skipped foils must be justified (page remains available, reasons for not filling must be given on the foil)
- Add material data sheet in presentation or attach it as separate document (pdf.)
- All information which are attached as separate documents (animations, material data sheet, ...) have to be named in presentation (*example: see attached document* "material data sheet super plastic.pdf")
- In final revision all pages with results and comments have to be implemented
- Pictures and results on foils have to be commented (what does the picture say, evaluation of the result, prevention action)
- Add special features (e.g. cooling inserts, cascade injection, ...) independently on additional foil if they are used
- Possible conspicuous features are to be listed in detail by the supplier in extra transparencies
- Several variants can be simulated, but one variant should be chosen (reason must be explain) and stay constant over simulation \rightarrow still only one MF document
- "Log-File" (automatically generated simulation protocol) as well as ".mfr file", ".rsv file" or other result files are desirable
- The responsibility for results and interpretation of results remains with the supplier
- Each step (A, B, C) gets its own document, the individual versions of this document (e.g. A1, A2, A3 ...) are adapted in this one document and modifications are described at page "document history"
- For two component parts the relevant pages must be copied independently
- At the "template page for free design", the design can be changed as desired (only on these pages)
- Risk assessment should always be filled in, if there is no risk this should be the comment.

not necessary	-
optional	0
necessary	+
as far as possible	(+)

Content

Title	Page		Step A (BSH / optional)	Step B (requested supplier)	Step C (chosen supplier)	
Result Overview	5		development	quotation	tool order	
Summary of results	6		(+)	+	+	
Summary of Optional Supplements	7		0	0	0	
Virtual Measurements	8 - 9		0	0	+	
General Information	10					
General Information	11		(+)	+	+	
Material Processing Parameters	12		+	+	+	
Material data sheet or Material data set	13		+	+	+	
pvT-Diagram	14		0	+	+	
Filler information	15	(only if fillers are used) о	+	+	
Simulation Results "Quotation	16					
Wall thickness analyse	17		+	+	+	
Injection System	18		only place	simplified	+	
Cooling System	19		-	(+)	+	
Fill Time animation	20		+	+	+	
Weld Lines	21		+	+	+	
Air Traps	22		0	+	+	
Sink Marks	23		0	+	+	
Shrinkage after cooling	24		(+)	+	+	
Deformation after cooling (total)	25		+	+	+	
Deformation after cooling (directional vector)	26 - 28		0	(+)	+	
Simulation Results "Tool Order"	29					
Pressure Distribution at switchover point	30		-	0	+	
Pressure Analyses	31		-	0	+	
Pressure at machine nozzle	32		-	0	+	
Temperature Distribution	33		0	0	+	
Fibre Orientation	34	(only if fibres are used) 0	0	+	
Optional Supplements	35					
Variation of Injection System	36	(optional)	0	0	0	
Animation of the velocity vectors	37	(optional)	0	0	0	
Flow Front Temperature	38	(optional)	0	0	0	
Holding Pressure Distribution	39	(optional)	0	0	0	
Plastic Core Distribution during cooling	40	(optional)	0	0	0	
Plastic Range during cooling animation	41	(optional)	0	0	0	
Shear Rate	42	(optional)	0	0	0	
Mesh Quality	43	(optional)	0	0	0	
Reversible model	44	(optional)	0	0	0	
Suggestions of optimisations	45	(optional)	0	0	0	
Variation of material to arrive better results	46	(optional)	0	0	0	
Additional Results	47	(optional)	0	0	0	

Result Overview

always to be filled out *(virtual measurements only for Step C)*

The chapter "Result Overview" must always be filled in with all results of current step. In Step C, all results of Step B must also be filled in.

The chapter "Result Overview" is a summary of all requested foils of chapter "Simulation Results" (Step B as well as Step C)

From Step C at the latest, all results must be based on a Moldflow (see optional simplification for Step B). Also in the case of simplification for Step B, the results table including risk assessment must be completed

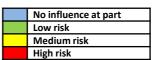
The virtual measurement report is only required for Step C on.

Summary of results

No influence at part
Low risk
Medium risk
High risk

For medium and high risk, please note planed prevention action, risks (also if they are named) do not exempt from feasibility commitment and duty to arrive tolerances and requirements at real part.

Page / Information	supplier comment/ result	planed prevention action	rating			
	Step B and following					
Wall thickness						
Fill Time						
Weld Lines	Fill in with the values	of the simulation (or for the				
Air Traps		request status also with the experience) and estimate the risk (colour gradation). In case of deviations or a				
Sink Marks						
Shrinkage	the risk (colour gradati					
Warpage/ Deformation (Total)	risk please indicate pr	eventive actions on your own				
Deformation (X-Direction)	Tisk, please indicate pl	 risk, please indicate preventive actions on your own. 				
Deformation (Y-Direction)						
Deformation (Z-Direction)						
	Step C and following					
Pressure Distribution						
Pressure Analyses						
Pressure at machine nozzle						
Temperature Distribution						
Plastic Core (optional)						
Fibre Orientation (optional)						


DCU	remarl
	remari
	I CITICIT

Comment

Name / Date

for optional results only

Summary of Optional Supplements

For medium and high risk, please note planed prevention action, risks (also if they are named) do not exempt from feasibility commitment and duty to arrive tolerances and requirements at real part.

Page / Information	supplier comment/ result	planed prevention action	rating

BSH remark
Comment
Name / Date

Step C

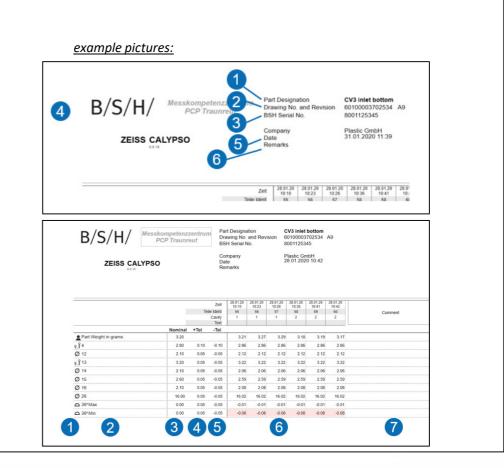
Virtual Measurements

Measurements at virtual final part (STL model of mould flow measured at measurement department) \rightarrow model have to be cleaned up of shrinkage, positioning must be done according to reference system. For dimensions out of tolerance or close to tolerance limit (2/3 of tolerance range) prevention action have to be noted. Deviations of virtual measurements do not exempt from feasibility commitment and duty to arrive tolerances at real part.

Rules for automatic measurement report otherwise use BSH template of Sample inspection report:

In general: Document must be written in English, geometrical tolerances with reference have to noted with "min" and "max" value (see example picture 2).

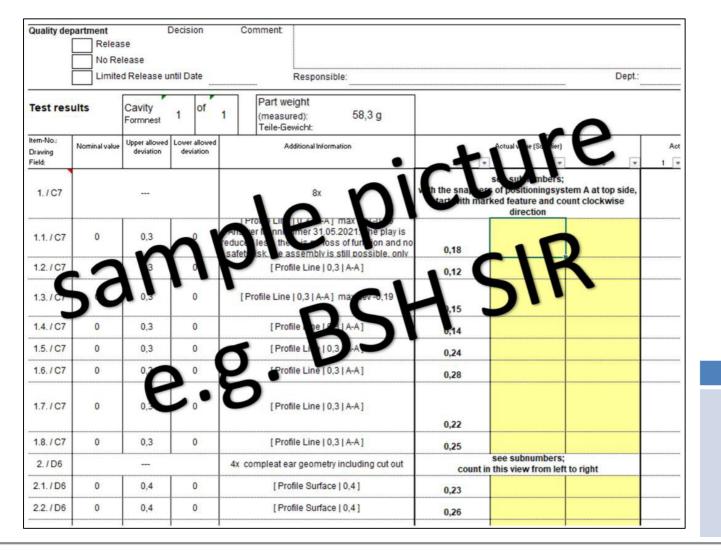
Necessary information:


Head of document:

- 1 part name
- 2 part number of BSH with revision
- 3 SAP code of BSH
- 4 supplier name
- 5 date
- 6 place for comments

Measurements:

- 1 symbol of indication (optional)
- 2 BCT number of drawing
- 3 nominal value
- 4 upper tolerance
- 5 lower tolerance
- 6 measurement value, values out of tolerance must be red marked
- (if more variations are measured, each variation in one column)
- (For FFOT samples, three parts per cavity must be measured, each
- with its own column \rightarrow see SIR document)


7 place for comments (for example: prevention action)

Virtual Measurements

Expected measurements at final part \rightarrow cleaned up of shrinkage.

BSH remark

Comment

Name / Date

B/S/H/

BSH Hausgeräte GmbH / Product Division Consumer Products

General information

always to be filled out

Input values of the simulation / basis data of the Moldflow

In the special case "Fill in on the basis of experience" (see results of Step B/ Status Quotation), the fields are to be filled in as far as possible.

The material data / material parameters of the material used for simulation must be entered in this document. If this material differs from the one indicated on the drawing, a justification must be given.

General Information

Screenshots of the input mask for Basic data of simulation is sufficient if all information are readable. If a replacement material is used, a justification for the chosen material shall be given.

Part								
Part name	Sample o	component			CQP Classification	В		
Drawing Nr & Revision	6010000	60100003200754 A8			SAP Code	8001001515		
Supplier								
address Adress of supplier		Polymere Street 007			Moldflow done by (insofar as supplier does not make Moldflow at there own)	Address of Moldflow Company if not done by supplier		
contact Contact person of si	Mr. Mustermann E-Mail@Mustermann.com Tel: 0815 007 4711			Moldflow software & version	Autodesk Moldflow Insight 2019.02			
Basic data of simulation								
Planned machine		ABURG Brack die Maschine			Clamping force [KN]	3.500		
Number of cavities		1+1			Injection pressure [bar]	1.200 (PMMA) / 1.600 (ABS)		
Material component 1		РММА			Volume injection unit 1 [cm ³]	555		
Material component 2 *		ABS			Volume injection unit 2 [cm ³] *	115		
Tool temperature during filling		90°C			Mesh size	0,8 mm		
Tool temperature during cooling		50°C			Mesh quality	98 %		
Middle plane s	hell body ((DD) 3D mesh X		Х	Number of mesh elements (part)	1.500.000		
Cooling BEM	ing BEM Cooling FEM X		Х	Number of mesh elements (mold) **	1.200.000			

* only for 2K-Parts

B/S/H/

** only for Step C

BSH Hausgeräte GmbH / Product Division Consumer Products

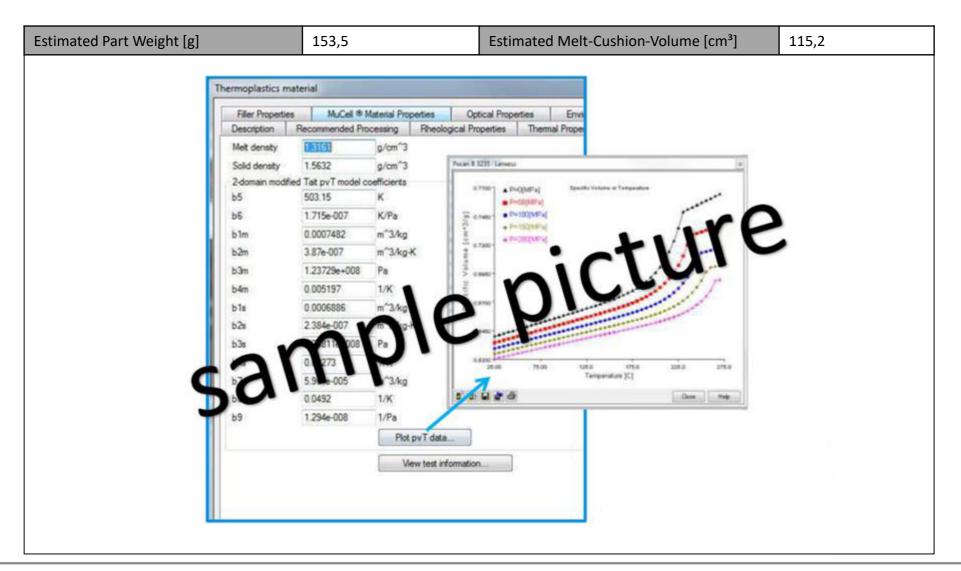
Material Processing Parameters

Screenshots of the input mask are sufficient if all information are readable.

If a replacement material is used, a justification for the chosen material shall be given.

in a replacement in	ateriaris useu, a justin	cation for	the t	.nosch m	attriars		c given.				-	
				Mate	erial De	escrip	otion & Ma	iterial Database				
Material Name		ALCOM AWL 109/15 WT1217-11LB						Material Family		ABS / PC		
Test Date * 10.10.1910		Last Modification * 11.11.2011						Material Structure A		Amorphou	Amorphous	
Material Data Completeness Indicator *		Gold	Х	Silver	ilver Bror		ze	Fillers		15 % Light reflection glass particles		
Processing Parameters												
Mold Temperature [°C]		90						Maximum Shear Stress [N/mm ²] 0,4		0,4	,4	
Mold Temperature range [°C]		min.	8	30 max.		100	Maximum Shear Rate [1/s]		50.000			
Melt Temperature [°C]		260						Transition Temperature [°C] 1		187		
Melt Temperature Range [°C]		min.	2	250	max.		270	Density Melt [g/cm ³]	1,318	Density Sol	lid [g/cm ³] 1,563	
Mechanical Properties												
Elastic Modulus Parallel [N/mm ²]		9714,5						Thermal Expansion coefficient Parallel [1/°C]		2,25 * 10 ⁻⁵		
Elastic Modulus Perpendicular [N/mm ²]		5542,3						Thermal Expansion coefficient Perpendicular [1/°C] 5,09 * 10 ⁻⁵				
Poissons Ratio Parallel		0,417						Yield strain [%] * 3,1		3,1		
Poissons Ratio Perpendicular		0,417						Breaking stress [N/mm ²] * 56,4				
Shrinkage												
Observed Shrinkage Parallel [%]		min.	min. 0,224 max.			0,330	Observed Nominal Shrinkage Parallel [9		%] 0,259			
Observed Shrinkage Perpendicular [%]		min.	1	,507	max.		2,194	Observed Nominal Shrinkage Perpendicu		ular [%] 1,849		
Replacement Material (only if correct material is not available for Moldflow)												
Explanatory Comment e.g. material with identical or comparable properties - in any case with risk assessment												
Used theoretical Models												
Shrinkage model *								Fiber orientation model	*			

BSH Hausgeräte GmbH / Product Division Consumer Products

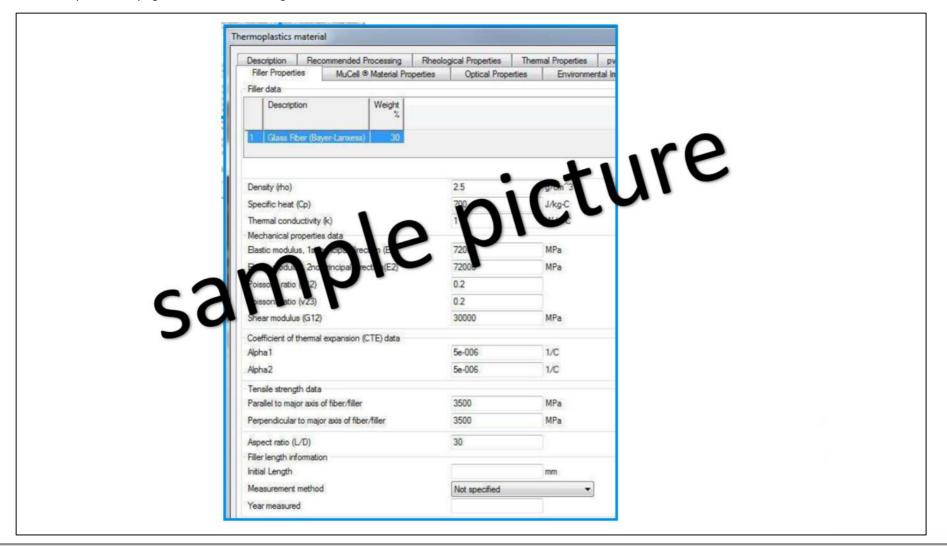

* optional, if possible please specify

Material data sheet or Material data set

Placeholder for material data sheet if the template foil is not filled out

Material data sheet

pvT-Diagram



B/S/H/

(only in case fillers are used)

Filler information

data comparable to page "Material Processing Parameters"

B/S/H/

Simulation Results

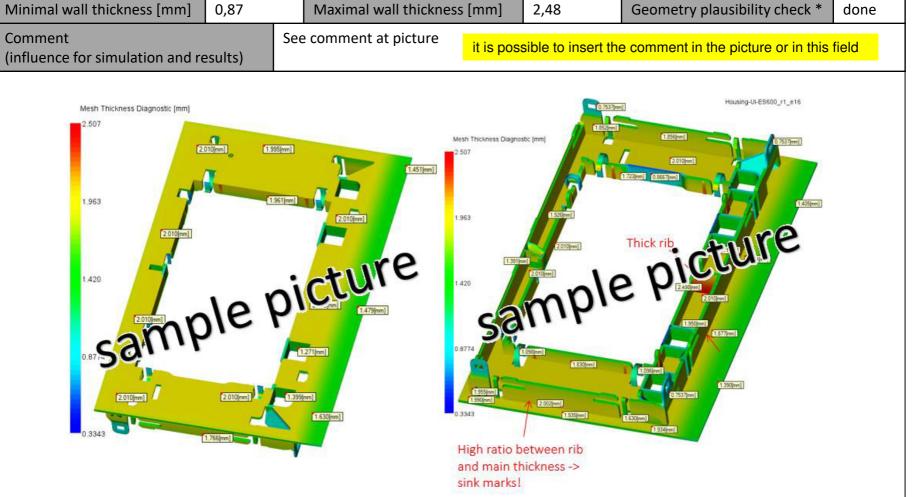
Step B and following (Status: "Quotation")

Optional simplification for simple parts (option excluded for components with CQP-A level):

It is sufficient to fill in the comment fields of step B for submission of the offer. For example, if supplier can assess risk based on his experience without simulation. An independent comment on each point/ page is necessary. Comments must be clearly marked on which data basis (e.g. experience) they are basing.

Summary results table with estimated risk must be filled in completely, even if the pages are only filled with comments (without doing Moldflow simulation, based on experience).

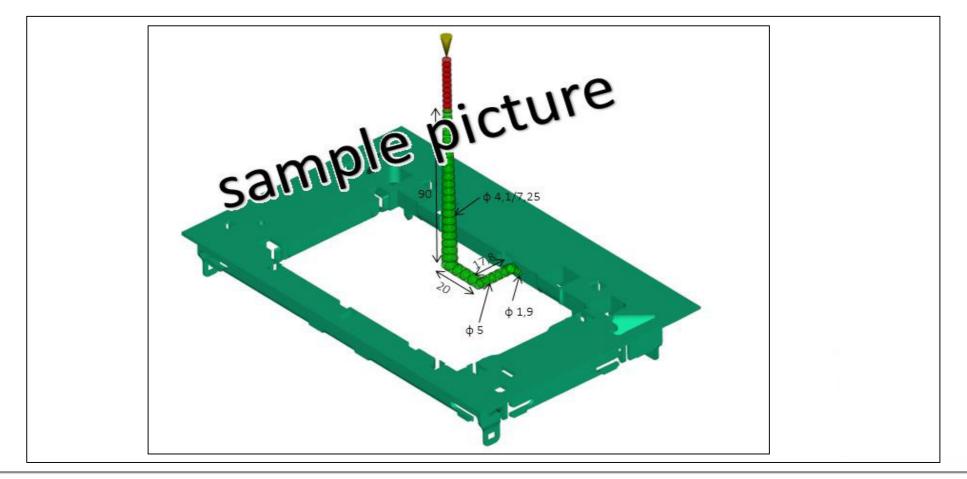
This simplification is only valid for Step B (Status: "Quotation"), in Step C (Status: "Tool Order") all required pages have to be filled in with Moldflow results, also the pages "Step B and following".


Wall thickness analyse

If more detailed descriptions are needed, these can be made on the mesh quality slide.

* Is the geometry meshed fine enough, represented well by the wall thickness distribution (radii, ribs, mesh accuracy, ...)

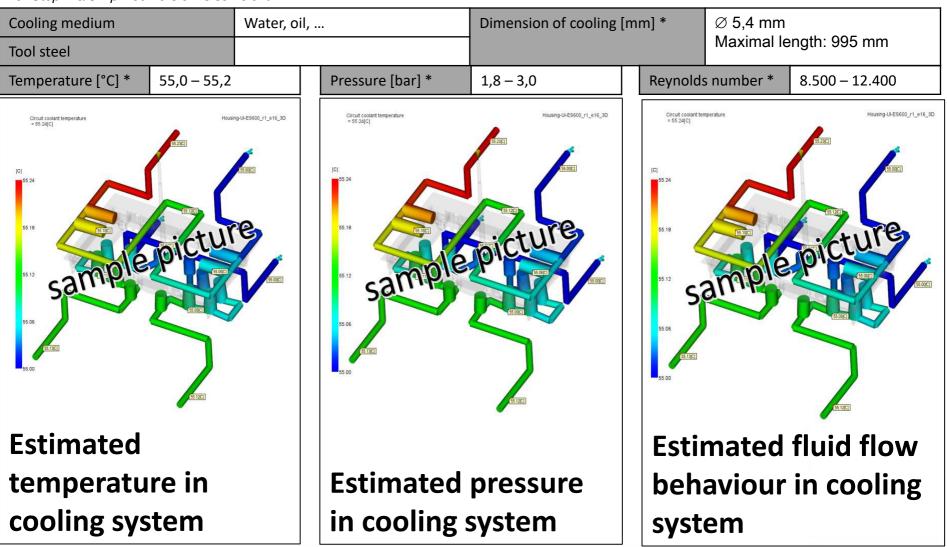
B/S/H/



Injection System

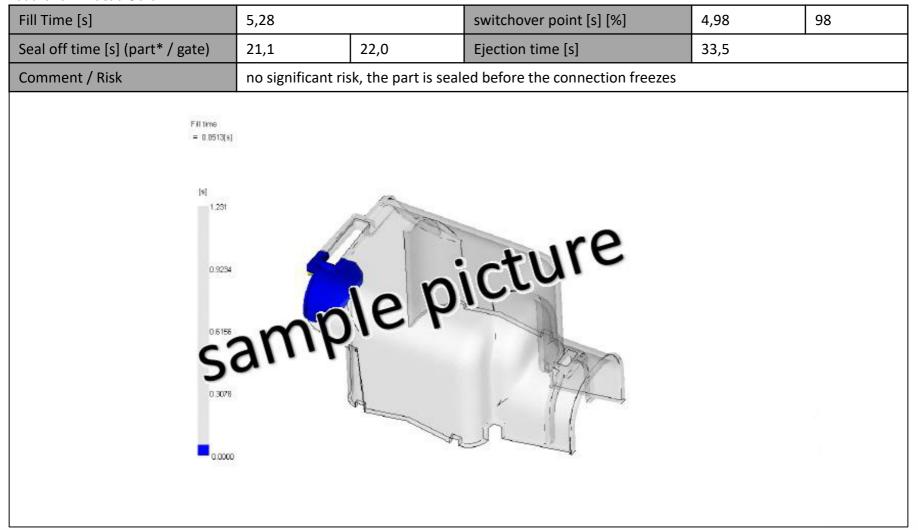
For Step B a simplified version is sufficient

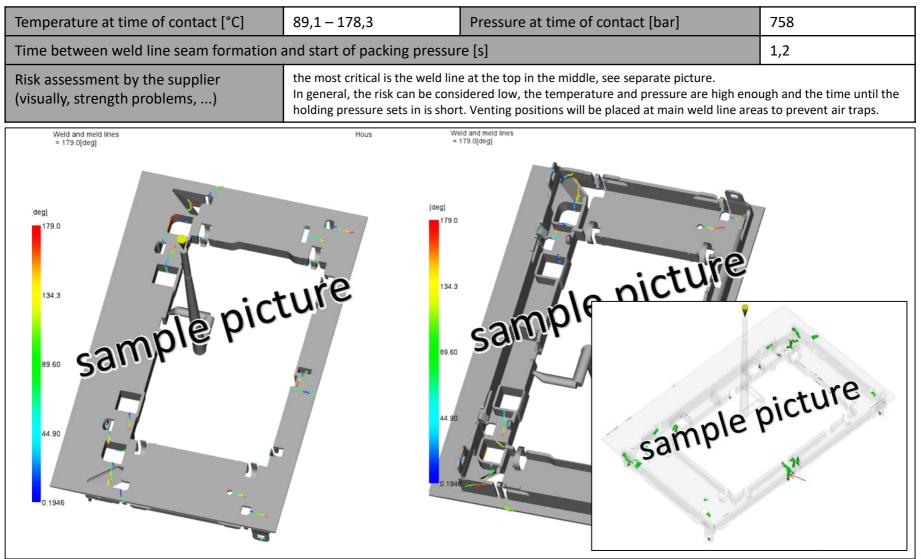
Type of System	Hotrunner, Valve gate	Dimension of gate [mm]	Ø 1,9
Number of gate points	1		


B/S/H/

Cooling System

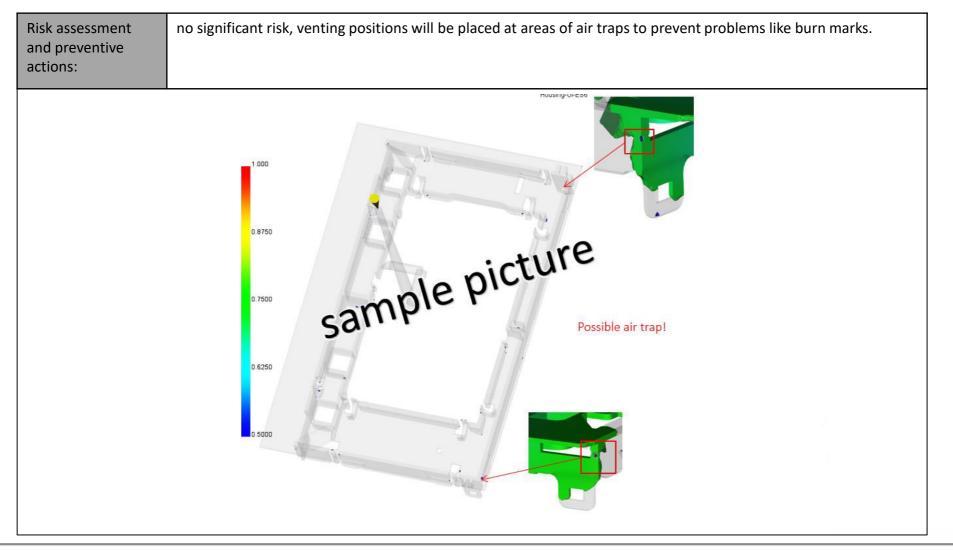
For Step B a simplified version is sufficient


* Range of result values

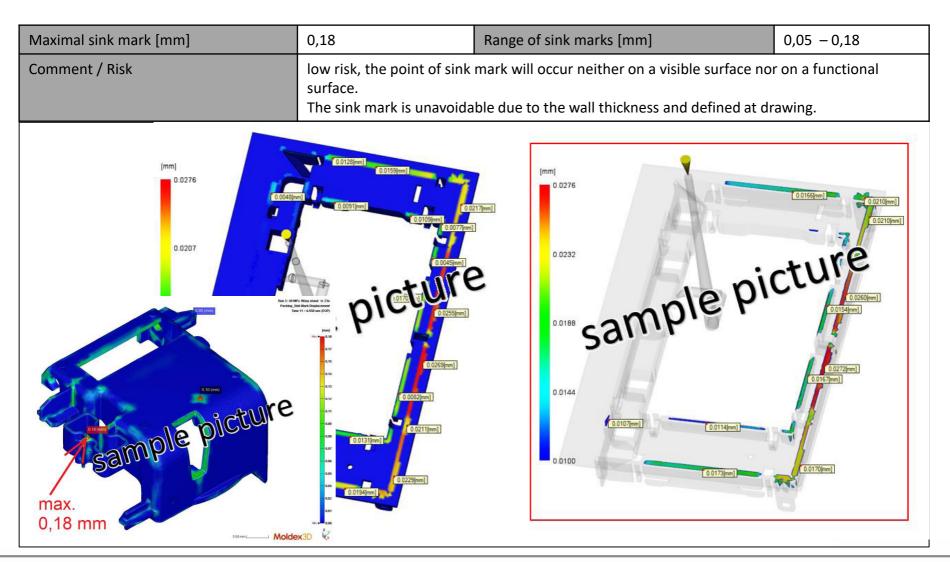

Fill Time Animation

In case of inaccuracies at the seal off point, please give more details at the foil "Plastic Core"

* Range of result values, details on page "plastic core"

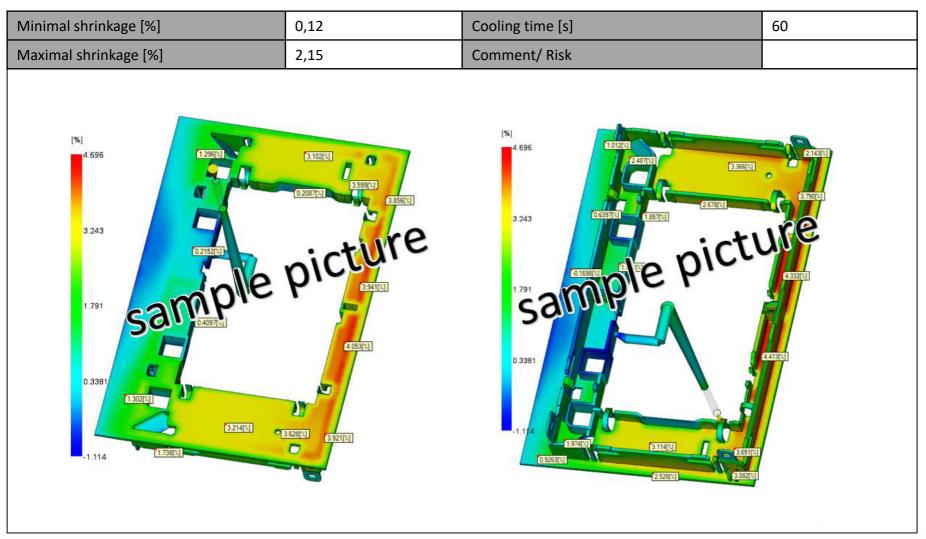


Weld Lines



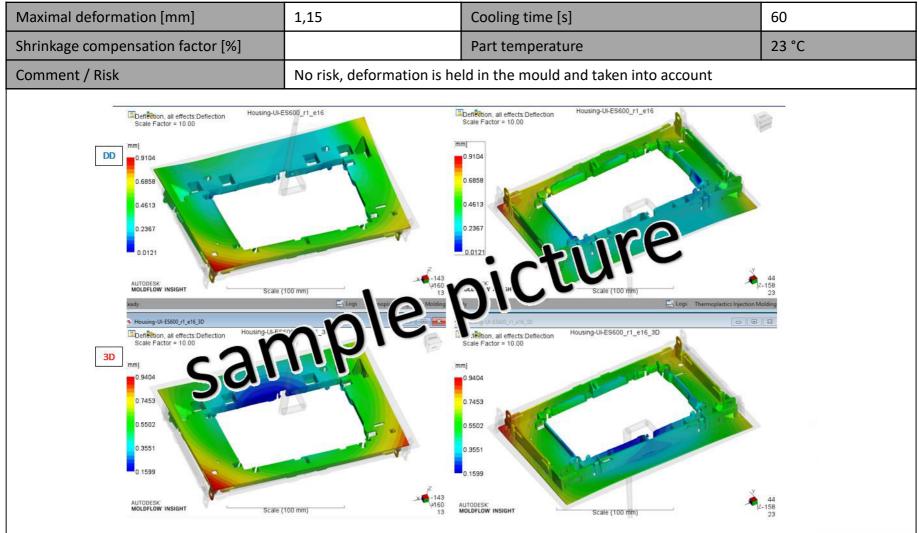
B/S/H/

Air Traps

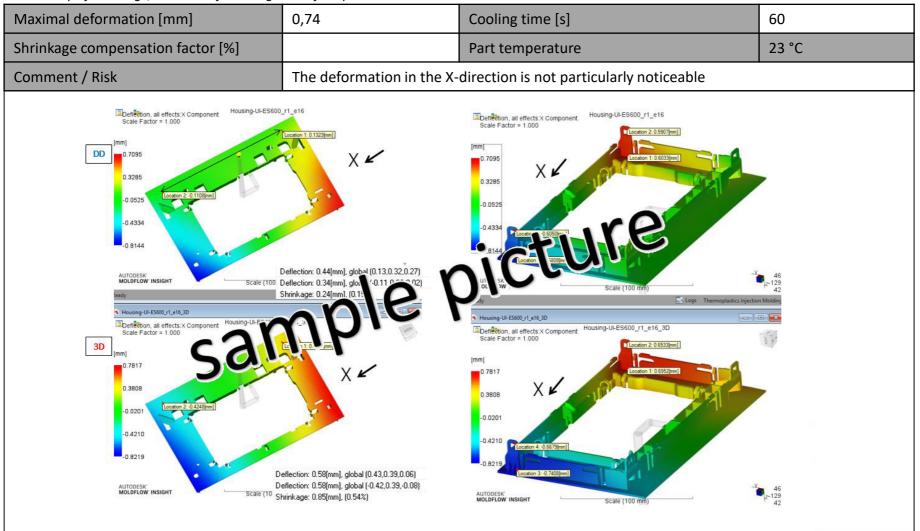

Sink Marks

Shrinkage after cooling

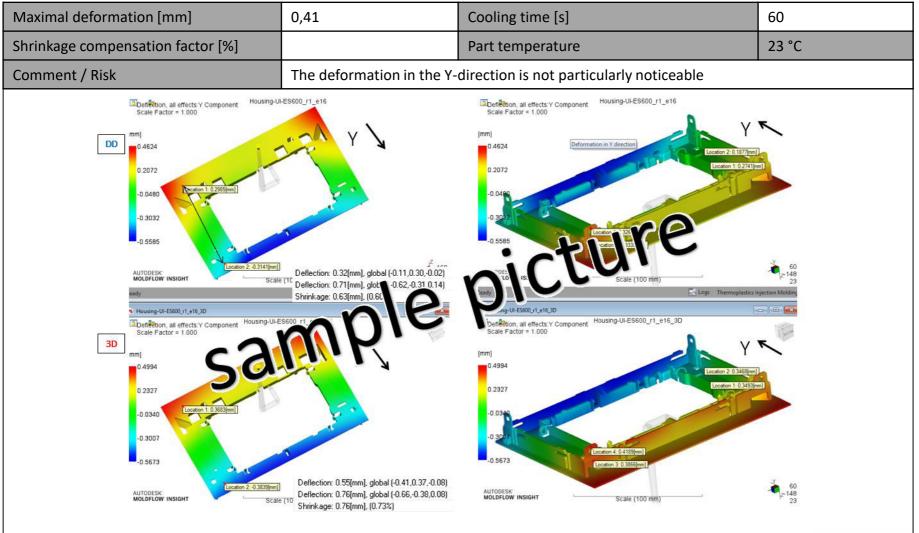
B/S/H/


Averaged volume shrinkage // Areas with shrinkage of 10 % or more must be clearly marked

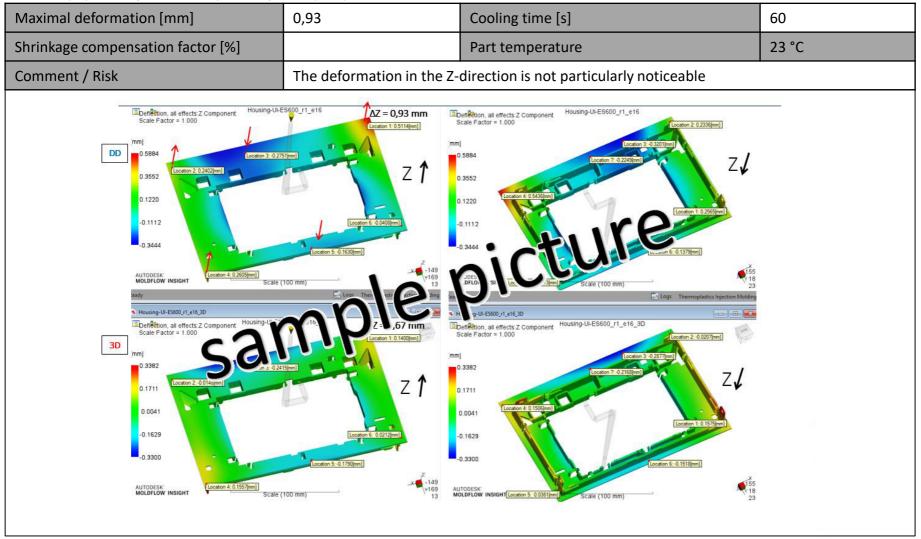
Deformation after cooling (total)


Warpage, cleaned up of shrinkage/ excluded of shrinkage \rightarrow at final part

X-Deformation after cooling

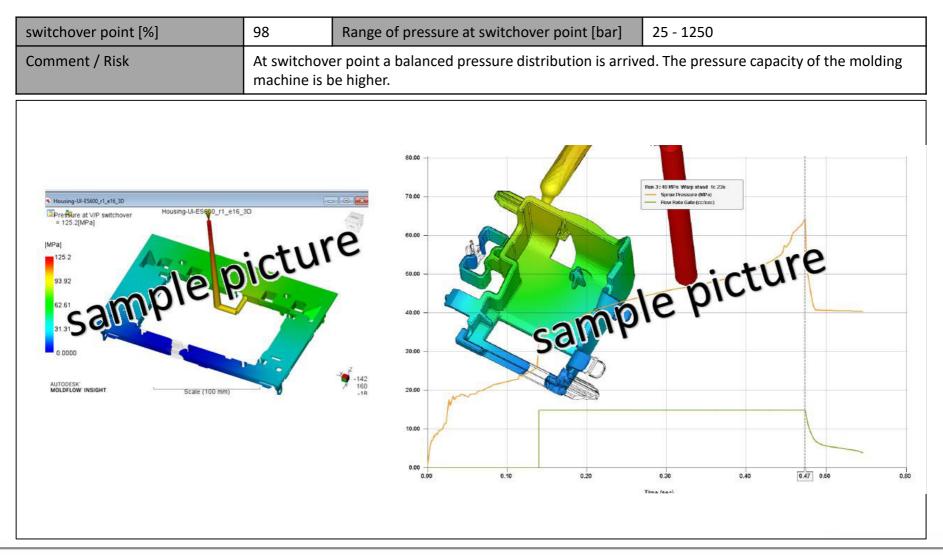

cleaned up of shrinkage/ excluded of shrinkage \rightarrow at final part

Y-Deformation after cooling


cleaned up of shrinkage/ excluded of shrinkage \rightarrow at final part

Z-Deformation after cooling

cleaned up of shrinkage/ excluded of shrinkage \rightarrow at final part

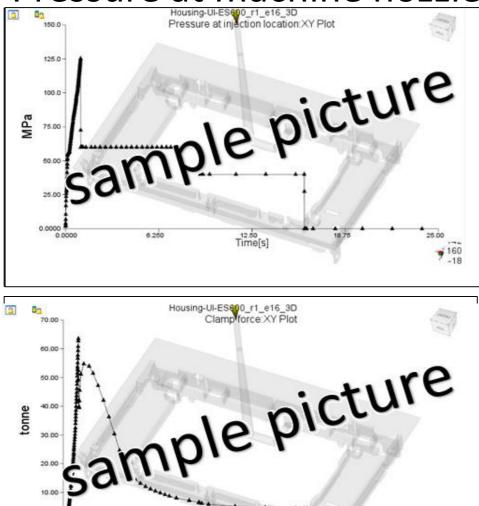

Simulation Results

Step C (Status: "Tool Order")

BSH Hausgeräte GmbH / Product Division Consumer Products

MF Report (Version 08/2021) I Page: 29

Pressure Distribution at switchover point



Pressure Analyses

Statement Maximal pressure [bar] 2328 Maximal pressure [bar] 7817 Maximal pressure [bar] 643 [MPa] [MPa] [MPa] Inkl. Heiß- & Kaltkanal Inkl. Kaltkanal Nur das Bauteil 6.426 23.28 78.17 4.820 17.46 58.63 3.213 11.64 39.08 1.607 5.820 19.54 0.0000 0.0000 (MDa) 0.0000 **Picture of pressure Picture of pressure Picture of pressure** at part and cold at part, cold runner only at part and hot runner runner

B/S/H/

Pressure at machine nozzle

Maximal pressure [bar]	1.252
Level of packing pressure [bar]	615
Time till packing pressure [s]	7,4
Time of packing pressure [s]	8,2
Maximal clamp force [KN]	550
Machine size [KN]	650

Comment

no imbalance in the filling process is recognisable. The pressure capacity of molding machine is higher holding pressure is defined. The maximum applied clamp force is less than 80 % of the machine limit

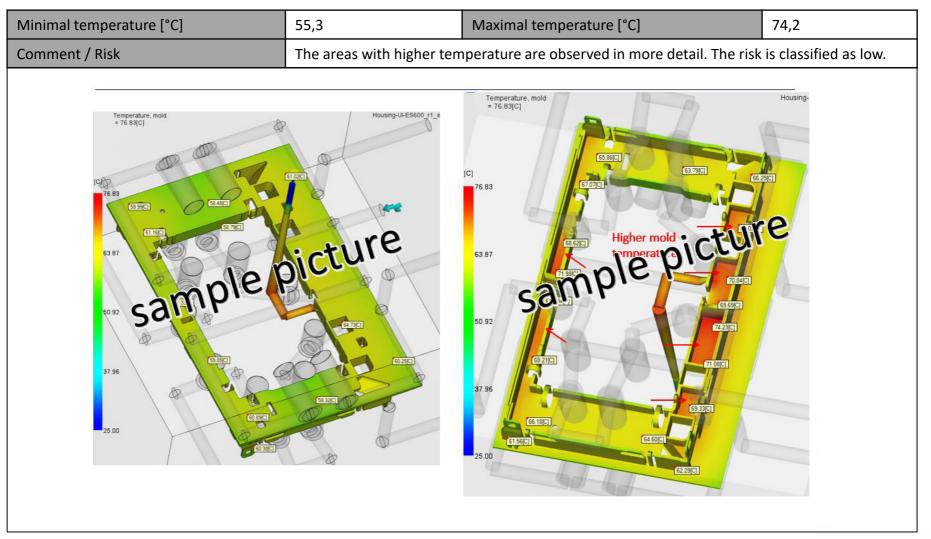
12.50 Time[s]

18.75

25.00 160

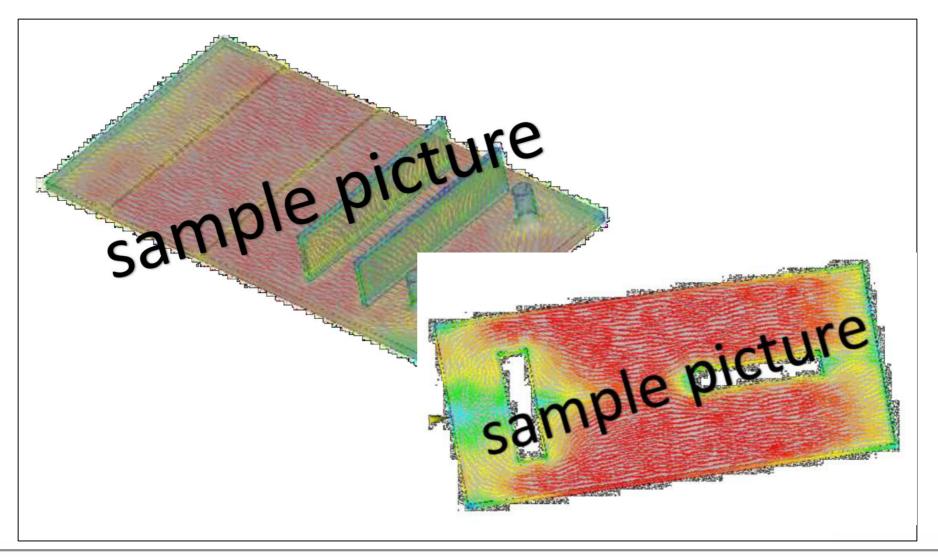
10.00

0.0000


0.0000

6,250

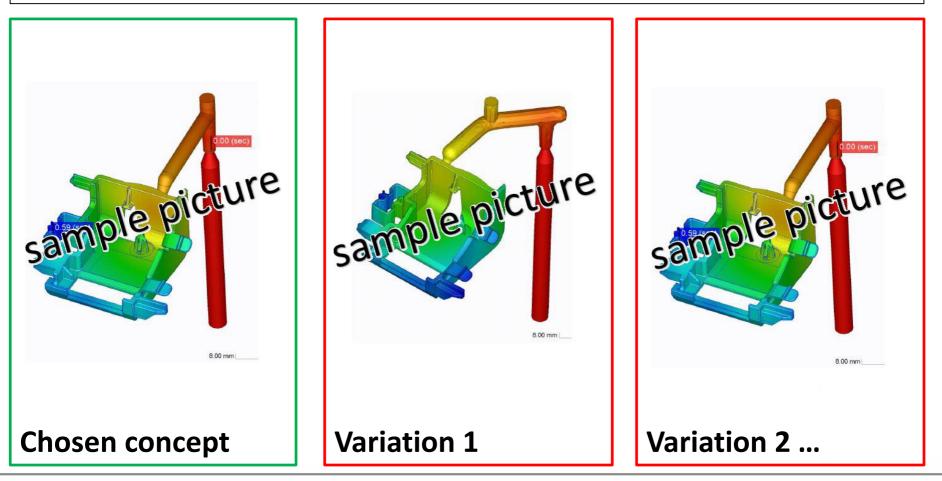
Temperature Distribution



Averaged component temperature at end of cycle

(only in case fillers are used)

Fibre Orientation

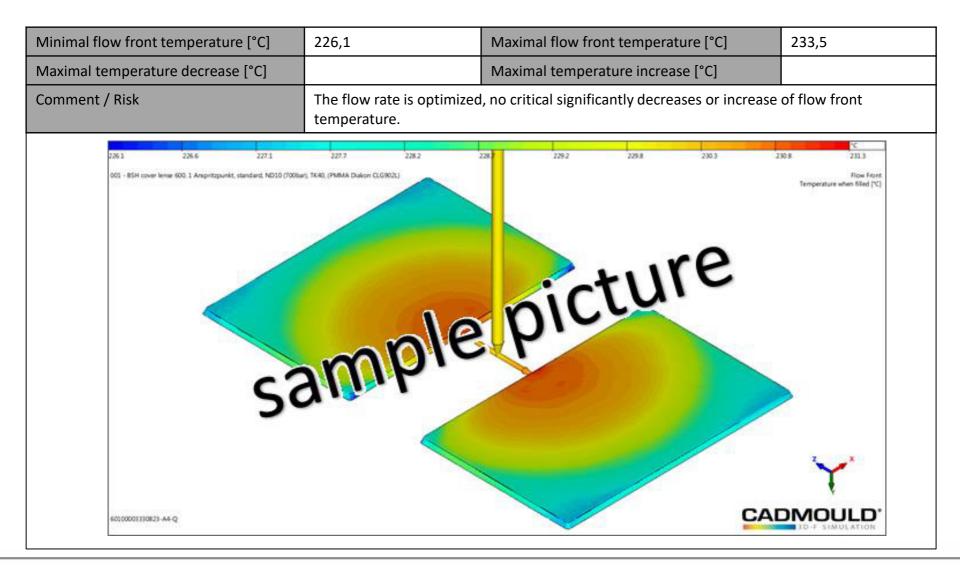

Optional Supplements

Optional independent of step

Variation of Injection System

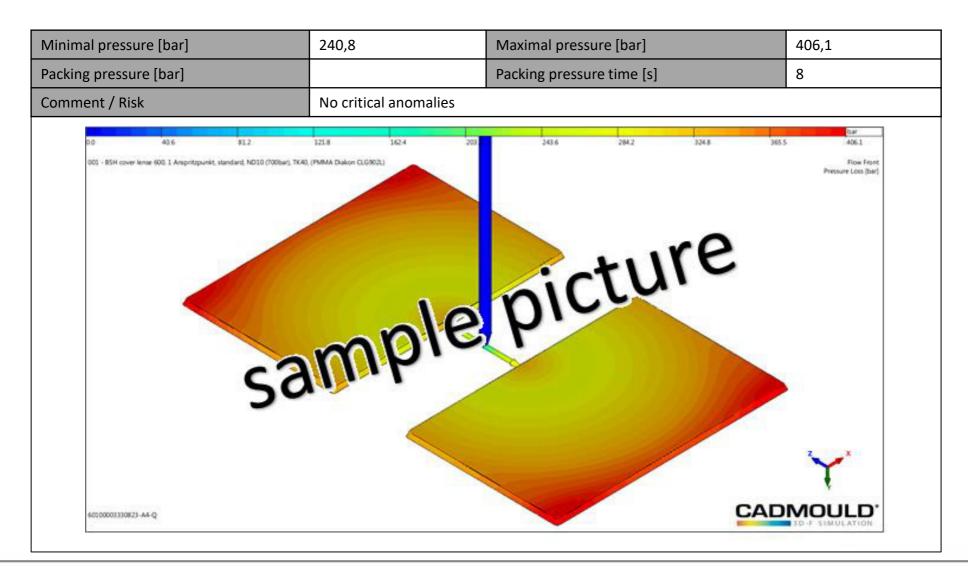
The injection point is chosen because it gives better results in MoldFlow terms of dimensional accuracy.

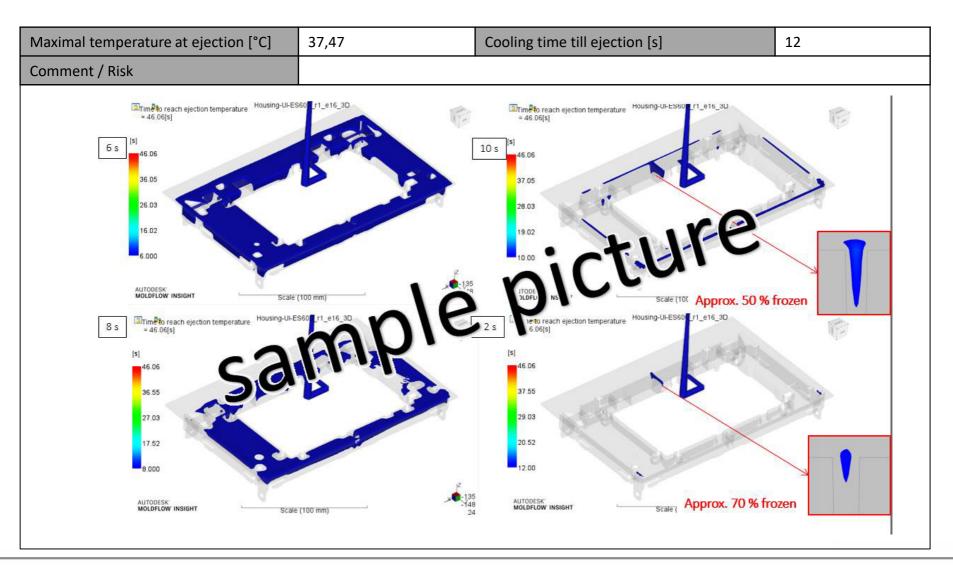
Animation of the velocity vectors


only if there are abnormalities

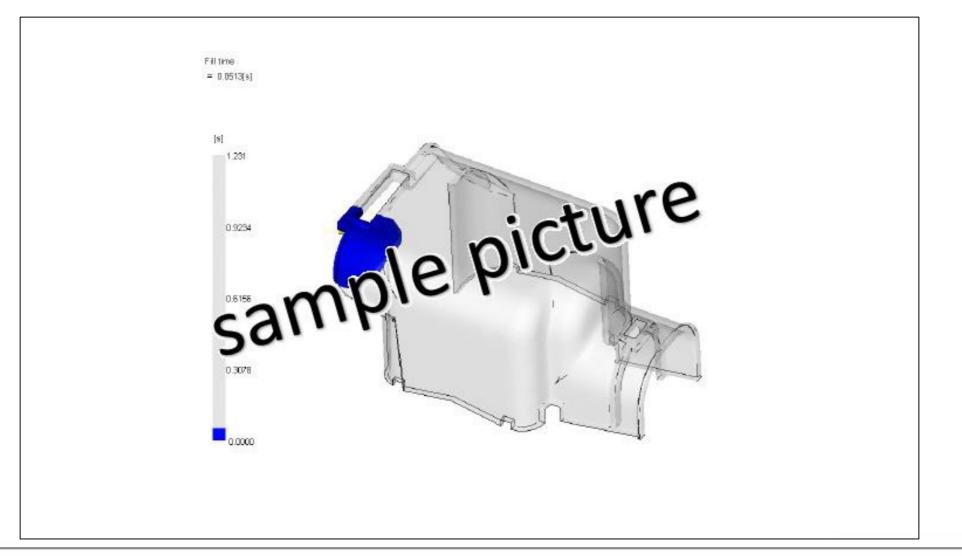
Animation of the velocity vectors

BSH Hausgeräte GmbH / Product Division Consumer Products


Flow Front Temperature



Holding Pressure Distribution



Plastic Core Distribution during cooling

Plastic Core during cooling animation

Shear Rate / Temperature

Maximal shear rate [1/s]	Max temperature [°C]	
Comment / Risk		

Area of max. Shear Rate	Area of max. Temperature

Mesh Quality

B/S/H/

Maximal element size [mm]	Minimal element size [mm]	Average element size [mm]	
Comment			
Picture of Mesh elem	ents at Part		

Reversible model

Reversible model

BSH Hausgeräte GmbH / Product Division Consumer Products

Suggestions of optimisations B/S/H/ Variation of material to arrive better flatness

BSH Hausgeräte GmbH / Product Division Consumer Products

MF Report (Version 08/2021) I Page: 45

Variation of material to arrive better results

Template page for free design to present suggestions

BSH remark

B/S/H/

Comment

Name / Date

B/S/H/

Additional Results

Template page for free design

Place for results that supplier usually considers, but which are not required and therefore have no separate template page.

Please enter a descriptive comment